public class Eigenvalue2x2
extends java.lang.Object
MNumber
entries.Constructor and Description |
---|
Eigenvalue2x2() |
Modifier and Type | Method and Description |
---|---|
static MNumber[] |
eigenvalue(MNumber[] matrix)
Computes the (real or complex) eigenvalues of
matrix . |
static MNumber[] |
eigenvector(MNumber[] matrix)
Computes the normalized eigenvectors which belong to the eigenvalues
given by
eigenvalue . |
static MNumber[] |
eigenvectorOfSymmetricMatrix(MNumber[] matrix)
Computes the orthonormalized eigenvectors of the symmetric
2x2-
matrix . |
static boolean |
realEigenvaluesExist(MNumber[] matrix)
Checks whether
matrix has real eigenvalues. |
public static boolean realEigenvaluesExist(MNumber[] matrix)
matrix
has real eigenvalues.matrix
- a MNumber[]
holding rowwise a
2x2-matrix.boolean
which is true if matrix
has
only real eigenvalues.java.lang.IllegalArgumentException
- if the length of matrix
is |=4.public static MNumber[] eigenvalue(MNumber[] matrix)
matrix
.matrix
- a MNumber[]
holding rowwise a
2x2-matrix.MNumber[]
holding the eigenvalues of matrix
.java.lang.IllegalArgumentException
- if the length of matrix
is |=4.public static MNumber[] eigenvector(MNumber[] matrix)
eigenvalue
.
If two different eigenvectors exist, (v_11, v_12, v_21, v_22) is returned,
where v_1 is the eigenvector belonging to the first eigenvalue and v_2 is
the eigenvector belonging to the second eigenvalue. If only one
eigenvector exists, this eigenvector is returned.matrix
- a MNumber[]
holding rowwise a
2x2-matrix.MNumber[]
holding the eigenvectors of matrix
.java.lang.IllegalArgumentException
- if the length of matrix
is |=4.public static MNumber[] eigenvectorOfSymmetricMatrix(MNumber[] matrix)
matrix
.matrix
- a MNumber[]
holding rowwise a
symmetric 2x2-matrix.MNumber[]
holding the orthonormalized
eigenvectors of matrix
.java.lang.IllegalArgumentException
- if the length of matrix
is
|=4 or if matrix
is not symmetric.Further documentation and examples can be found under www.mathletfactory.de.